Big Bang Residue reveals most of the distant dark matter studied so far

What is happening

Scientists have investigated the farthest studied dark matter halos using a gravitational lensing, a phenomenon predicted by Albert Einstein.

why does it matter

What they found while observing these rings could influence a well-known model in cosmology.

Our crooked world lies one of science’s greatest unsolved mysteries. Where is all the dark matter? what or what Is all matter dark?

I mean, we know it’s there.

Galaxies, including the Milky Way, rotate so fast that our physics predicts that everything inside should be tossed out like horses in a choppy merry-go-round. But it is clear that this is not happening. You, me, the sun and the earth are held securely together. Therefore, scientists hypothesize that something – perhaps in the form of a halo – must surround the galaxies to keep them from collapsing.

Everything that comprises this boundary is simply called dark matter. We can’t see it, we don’t feel it, and we don’t even know if it’s a single thing homogeneous. We only know that dark matter exists. It is the epitome of evasion.

But despite our inability to view or touch the matter itself, experts have intriguing ways to determine the effects it has on our universe. After all, we infer the existence of dark matter primarily by observing how it holds together between galaxies.

And on Monday, the scientists who took advantage of this principle announced their impressive new results. Using an instrument cluster made up of warped space, cosmic remnants from the Big Bang and some powerful astronomy tools, they’ve discovered a deep space region of previously unstudied dark matter halos – each located around an ancient galaxy, faithfully protecting it from living in nightmare fun. horrifying.

These vortices, according to a new study on the discovery published in Physical Review Letters, go way back 12 billion years ago, just under two billion years after the Big Bang. This could make it the smallest dark matter ring humanity has ever studied, the study’s authors suggest, and possibly a precursor to the next chapter in cosmology.

“I was glad that we opened a new window on that era,” Hironao Miyake of Nagoya University and an author of the study said in a statement. “12 billion years ago, things were very different. You see more galaxies that are forming than they are now; the first galaxy clusters are starting to form as well.”

Wait, distorted space? cosmic relic?

Yes, you read correctly. Let’s explain.

More than a century ago, when Albert Einstein formulated his famous theory of general relativity, one of the predictions he made was that ultra-strong gravitational fields generated by massive amounts of matter would twist the fabric of space and time, or spacetime. It turns out he was right. Today, physicists are taking advantage of this concept by invoking a technique called gravitational lensing to study very distant galaxies and other phenomena in the universe. It does something like this.

Imagine two galaxies. Galaxy A in the background and B in the foreground.

Basically, when light from galaxy A passes through galaxy B to reach your eyes, that luminescence is distorted by b matter – dark or not. But this is good news for scientists, because such distortion a lot grow up Distant galaxies are kind of like a lens.

Furthermore, there is a kind of inverse calculation that you can do with this light twist to figure out how much dark matter surrounds galaxy B. Many From dark matter, you will see a Many More distortion than expected from the visible material inside. But if it didn’t contain that much dark matter, the distortion would be much closer to your prediction. This system worked well, but there is a caveat.

Photographing a distant bright spot, representing a quasar, emitting light that distorts a foreground galaxy before reaching the Hubble Space Telescope's lens.

This diagram shows trajectories of light from a distant quasar, a really bright object at the center of a galaxy, gravitationally lensed by a galaxy in the foreground on its way into the lens of the Hubble Space Telescope.

NASA, European Space Agency and de Player (STScI)

A standard gravitational lens only allows researchers to identify dark matter around galaxies that are approximately 8 billion to 10 billion light-years away, maximum.

This is because as you look deeper and deeper into the universe, the visible light becomes more and more difficult to interpret, and eventually turns into infrared light that is completely invisible to the human eye. (For this NASA’s James Webb Space Telescope It’s a big deal—it’s our best shot at capturing the faintest invisible light emanating from the distant universe.) But what this means is that visible-light distortion signals for dark matter studies become too faint after a certain point to help us analyze hidden objects.

Miyatake came up with an alternative solution.

We probably can’t observe the standard light distortions of dark matter detection, but what if there was another type of distortion we could see? As it turns out, there is: microwave radiation emitted by something other than the Big Bang. It’s largely a Big Bang heat remnant, known formally as the cosmic microwave background radiation, or CMB radiation.

“Look at the dark matter around distant galaxies?” Masami Oshi, a cosmologist at the University of Tokyo and co-author of the study, said in a statement. “It was a crazy idea. Nobody realized we could do this. But after I gave a talk about a large, distant galaxy sample, Hironao came to me and said it might be possible to look at the dark matter around these galaxies using the CMB.”

In essence, Miyatake wanted to note how dark matter is the gravitational lensing of the first light of our universe.

Capture parts of the Big Bang

“Most researchers use source galaxies to measure the distribution of dark matter from the present to 8 billion years ago,” Yuichi Harikan, associate professor at the University of Tokyo and co-author of the study, said in a statement. “However, we can look further into the past because we used the farthest CMB to measure dark matter. For the first time, we’ve been measuring dark matter from roughly the very first moments of the universe.”

To arrive at their findings, the new study team first collected data from observations taken by the Subaru Hyper Suprime-Cam Survey.

This led them to identify 1.5 million lensing galaxies – a group of hypothetical B galaxies – that can be traced back 12 billion years ago. Then they requested information from the European Space Agency’s Planck satellite about the Big Bang microwave. Put it all together, and the team can see if and how these lens galaxies distorted microwaves.

A view of hundreds (maybe thousands) of galaxies in deep space

The first deep field detection of the James Webb Space Telescope was revealed on July 11. You can see in it a large number of gravitational lenses as evidenced by the galaxies extending towards the center.


“This result gives a very consistent picture of galaxies and their evolution, as well as the dark matter in and around galaxies, and how this picture evolves over time,” Nita Bahkal, professor of astrophysics at Princeton University and co-author of the study said in a statement.

Notably, the researchers stressed that their study found that dark matter from the early universe does not appear as lumpy as our current physical models suggest. Ultimately, this part could modify what we currently think about cosmology, especially theories rooted in the so-called Lambda-CDM model.

“What we found is still uncertain,” Miyatake said. “But if true, it would suggest that the entire model is flawed as you go back in time. This is exciting because if the result persists after the uncertainties are reduced, it could indicate an improvement to the model that may provide insight into the nature of dark matter itself.”

Next, the study team wants to explore past regions of space by taking advantage of information held by Vera C. Rubin’s Legacy Survey of Space and Time.

“LSST will allow us to see half the sky,” Harrikan said. “I see no reason why we couldn’t see the distribution of dark matter 13 billion years ago.”